
Wildfire User Manual
Version 2.0

Francis Tang
Bioinformatics Institute

A-STAR, Singapore

June 15, 2005

http://wildfire.bii.a-star.edu.sg

Revision: 1.13 – Date: 2005/06/13 02:58:58 Last Author: francis

1

Contents

1 Introduction 3

2 Obtaining and Installing Wildfire 3
2.1 Installing Wildfire . 4

2.1.1 Windows installation instructions 4
2.1.2 Linux installation instructions 4
2.1.3 Uninstalling Wildfire . 4

2.2 Installing GEL . 4
2.2.1 Uninstalling GEL . 5

3 Getting started: a tutorial 5
3.1 A very simple workflow – multiple sequence alignment 6

3.1.1 Creating the workflow 6
3.1.2 Running the workflow 10
3.1.3 Running the workflow on a remote server 11
3.1.4 Overview . 13

3.2 A short pipeline . 13
3.2.1 Building the pipeline . 13
3.2.2 Generalising the pipeline 14
3.2.3 Overview . 24

4 Composing workflows 24
4.1 Adding custom programs . 25
4.2 Workflow constructs . 28

4.2.1 Program instances . 28
4.2.2 Dependencies (arrows) 29
4.2.3 Parallel container . 29
4.2.4 Parallel foreach container 30
4.2.5 Parallel for container . 30
4.2.6 While loop . 31
4.2.7 Conditional branches . 32

5 Executing workflows 32
5.1 Export workflow as GEL script 32
5.2 Illegal workflows . 33
5.3 GEL target platforms . 33

6 Examples 36

2

1 Introduction

There appear to be two trends in bioinformatics:

1. analyses are increasing in complexity, often requiring several applications
to be run as a workflow, on large data sets; and

2. multiple CPU clusters and Grids are available to more scientists.

A consequence of the first observation is that these analyses require a large amount
of processor time. Clearly the second observation has the potential to address this
consequence.

The traditional solution to the problem of running workflows across multiple
CPUs required programming, often in a scripting language such as perl. However,
perl programming places such solutions beyond the reach of many bioinformatics
consumers.

Wildfire addresses this problem, namely to let the bioinformatics consumer
run analysis workflows on multiple CPU computers. Wildfire provides a graphical
user interface for constructing and running workflows. Wildfire simplifies the
interfaces of individual bioinformatics applications using dialog boxes with drop-
down lists and check boxes. It also provides a drag-and-drop interface which
allows for an intuitive way to compose these applications into a workflow, such as
a pipeline. Wildfire is preconfigured to work with EMBOSS applications.

Once the workflow is constructed, Wildfire can execute the workflow (with
the help of GEL) on a variety of target platforms including standard laptops/PCs,
Beowulf-class clusters and Grids. Wildfire presents a uniform user interface to
these different target platforms.

2 Obtaining and Installing Wildfire

To use Wildfire, you will need to obtain and install both Wildfire and GEL. Both
are available fromhttp://wildfire.bii.a-star.edu.sg .

Wildfire is the client program and the one which you will work with directly.
You should install this on your personal computer, e.g. laptop or desktop.

GEL does the “back end work” and can be installed on the same computer
(if it is running a unix-like operating system such as linux) or on a server on the
network.

Without GEL, you can create workflows but there would be no way to execute
them.

3

2.1 Installing Wildfire

Wildfire can be downloaded fromhttp://wildfire.bii.a-star.edu.
sg and is licensed under the GPL terms, an open source license.

Wildfire is available either as a zip archive, or as a Windows executable in-
staller (recommended for Windows users).

2.1.1 Windows installation instructions

Download the Windows Installerwildfire-2.0-w32installer.exe , run
it and follow the on-screen instructions. The installer will add Wildfire to your
start menu, place an icon on your desktop and copy the examples intoC: \Documents
and Settings \〈username 〉\project \examples . Use either the start
menu or the desktop icon to start Wildfire.

2.1.2 Linux installation instructions

To install from the ZIP archive, just unpack the contents into a directory, e.g.$HOME/wildfire-2.0 ,
and then from this directory, run theinstall.sh script. Thereafter, you can run
Wildfire by executingwildfire.sh in this directory.

% cd $HOME
% unzip wildfire-2.0.zip
% cd wildfire-2.0
% ./install.sh
% ./wildfire.sh

The install script creates a directory called$HOME/.gel

2.1.3 Uninstalling Wildfire

To uninstall Wildfire if you had used the Windows installer to install, just run the
Wildfire Uninstall program, or use the Windows Add/Remove Programs feature.
This will remove the Wildfire program directory, and also remove the directory
c: \Documents and Settings \〈user 〉\.gel .

If you had installed Wildfire from the ZIP archive, then simply remove the pro-
gram directory, e.g.$HOME/wildfire-2.0 in the example above, and$HOME/.gel .

2.2 Installing GEL

Only Unix-like environments are supported by GEL. (GEL has been tested on
i386-linux, ia64-linux, alpha-OSF and sparc-SunOS.)

4

Downloadgel-2.0.tar.gz from wildfire.bii.a-star.edu.sg .
GEL is available without fee under an A-STAR license which allows for non-profit
research use. The precise terms of the license are available fromwildfire.
bii.a-star.edu.sg website.1 Extract this archive into your home directory
and run the install scriptmk-wrapper.sh :

% zcat gel-2.0.tar.gz | tar xf -
% cd gel-2.0
% ./mk-wrapper ‘pwd‘

The last step is important.
Add $HOME/gel-2.0 to your PATH. To check that GEL has been installed,

try runninggel on the command line:

% gel
GEL (Version: 2.0)
(c) 2004, 2005, Bioinformatics Institute, A-STAR, Singapore
...

If you see the banner above (plus help on command-line options), then you have
successfully installed GEL.

2.2.1 Uninstalling GEL

To uninstall GEL, just remove the program directory, e.g. remove$HOME/gel-2.0
in the example above.

3 Getting started: a tutorial

In this section, we will illustrate the steps to create a simple project using Wildfire.
Table 1 shows the default locations of where a project’s files are stored. For

example, if my login name isfrancis and project name ismyproject , then
the directory in Windows would be

C: \Documents and Settings \francis \project \myproject ,

and in linux would be

$HOME/project/myproject .

You will need to know these directories to add new files to the workflow.
1Please contact BII for information about other licenses.

5

OS Default project directory
Windows C: \Documents and Settings \〈user〉\project \〈name〉
Linux $HOME/project/ 〈name〉

Table 1: Default directories for Wildfire projects

3.1 A very simple workflow – multiple sequence alignment

We will first start with a very simple workflow. This workflow runs one program
(EMMA) which will compute a multiple alignment of a collection of sequences.

Note: you will need to make sure that ClustalW is installed and the binary
clustalw is available on the PATH.

3.1.1 Creating the workflow

Start Wildfire. You will be presented with the main Wildfire window (Fig. 1).
From theFile menu, selectOpen Project . In the Open Project dialog box
(Fig. 2) click on the “Create Folder” button and choose a suitable name for your
project. Here we have chosenmyproj . Once you have named your project, click
“OK” to create the project. When you click “OK”, Wildfire will create a number
of default directories in your project directory. These are shown in Fig. 3. The
purpose of these directories are explained in Tab. 2.

Directory Purpose
acddir Directory for storing ACDs of programs that are

specific to this project
execdir Directory for storing binaries and scripts for pro-

grams that are specific to this project
ipdir Directory for storing read-only input files
result Directory for storing the results of a project-run

Table 2: The meaning of default project subdirectories.

Our first workflow will consist of one program, the multiple sequence align-
ment program emma (which is an EMBOSS wrapper for ClustalW). In the left
panel, select the EMBOSS tab, and then select thetemplate“emma” by either us-
ing the hierarchical menusALIGNMENT -> MULTIPLE -> emma(see Fig. 4),
or the alphabetical list. Now you can click on an empty part of the project can-
vas (the main panel) and Wildfire will create the an emmainstancein the work-
flow, which is drawn as a yellow box. The top half of the box is the name of
the program, and the bottom half shows a unique serial number which is used to
distinguish different instances of programs on the same canvas.

6

Figure 1: The Wildfire main window.

Figure 2: Dialog box for opening and creating new projects.

7

Figure 3: Standard project subdirectories.

Figure 4: Selecting the EMMA template from the hierarchical EMBOSS menus.

8

Double-clicking on the instance, i.e. the yellow box, will bring up its proper-
ties menu (Fig. 5). From here you can control the options passed to EMMA for
this instance.

Figure 5: Changing the properties for the EMMA program.

• In the “input section”, select “paste”, and then in the “Sequence Cut and
Paste” text box, paste some sequence data. (EMMA expects several se-
quences in FASTA format.)

• In the “output section”, type the name of the file in which the multiple align-
ment will be stored, for exampleoutput.txt .

• Finally, in “GEL Attributes”, typeresult in the the “Result Dir” text box.
This instructs GEL to copy the output of the workflow into the directory
result .

Now click the “Apply” button at the bottom to accept the changes and “Close” to
close the dialog box.

Remember to save your workflow using theFile -> Save menu.

9

3.1.2 Running the workflow

To run the workflow, selectRun -> Start Run . This will bring up a dialog
box with a list of “Profiles”. For the moment, select profile “local” (which is
available by default) and then click “Run”.

The “local” profile has been configured to run the workflow on the same ma-
chine which is running Wildfire. Therefore, it is assumed that GEL is already
installed on this machine (as are EMBOSS and ClustalW).

As Wildfire delegates execution to GEL, the canvas is updated to reflect the
state of execution. Small icons will appear on the top right corner of the yellow
boxes. A small cog indicates that the job has been queued for execution or has
started running, and a green tick indicates that the job has completed. A dialog
box will alert you when the whole workflow has finished running. After execution,
you will see a screen like that of Fig. 6.

Figure 6: Wildfire window after workflow execution has completed.

To view the results, you can either browse theresult subdirectory of the
project directory (as shown in Tab.1), or use the project browser tab in the left
pane. Figure 7 shows the project browser pane after execution.

Notes: If you had forgotten to specify a result directory, then there will be
no files in the directoryresult when the workflow has finished. The output
files will still be available in the temporary work directory which has the form
Jtmp-XXXX whereXXXXis typically a 10 digit number.

10

Figure 7: The project browsing pane. Text files and image files can be viewed by
double-clicking on the file name.

3.1.3 Running the workflow on a remote server

We will now run the workflow on a remote server without change. You may want
to do this because

1. Wildfire is running on Windows, and since GEL only runs on UNIX-style
operating systems, you must run the workflow on a remote server.

2. The workflow takes too long to run your machine and you would like to
take advantage of multiple CPUs on a remote server such as a cluster.

3. You don’t have all the necessary applications installed on your machine, but
they are available on a remote server. For example, this example requires
(other than GEL) EMBOSS and ClustalW.

Fortunately, running the workflow on a remote machine is not much harder.
Recall in the previous section, to run the workflow we selected the “local”

profile. To run the workflow on a remote server, we must create a new profile. In
the “Start Run” dialog box, click on the “New” button to bring up the dialog box
similar to that in Fig. 8.

The “Profile” field is just the name of the profile and can be anything you
feel appropriate. Select the “Remote” radio button to indicate that this is a profile

11

for remote execution. In “Hostname”, give the internet host name of the remote
server. Select “Local Threads” for “Scheduler”, which means that programs will
run directly on the server itself without going through a scheduler. The “Local
Threads” option will work for all servers. The “NumProc” field specifies the
maximum number of concurrent programs when running the workflow; this value
can be used to tweak the workflow execution performance, but it does not change
the results. Click “Save” to save the profile.

The newly created profile will be available when you next want to run your
workflow. To use the profile, just select it and click “Run”. Wildfire will ask for
your login password for the remote server specified in the profile.

When running a workflow on a remote machine, Wildfire will copy over all
the related files to the remote server, and then run GEL remotely. When execution
is complete, Wildfire will copy the results back to the local machine. You can
view the results using the project browser as before.

Figure 8: Dialog box for creating a new execution profile. Here the user can
specify the name of the remote machine, and what sort of scheduler it uses. The
“Local Threads” option means that this profile will not use any scheduler but
rather will run the jobs directly, up to a maximum number of four (given in the
NumProc field) concurrent threads.

Since this is a simple workflow, you will likely find that total execution time
is longer (i.e. the time between clicking “Run” and receiving the “completed” no-
tification is longer). This is because remote execution introduces further overhead
which is required to move files around. However, for larger workflows which
exhibit parallelism, multiple CPUs on the remote server will be able to run the
workflow faster.

12

3.1.4 Overview

In this first section, we created a simple, one-program workflow. We then showed
how to execute it on the local machine, and then remotely on a server. You will
find that local and remote execution modes behave similarly from the point of
view of result files.

3.2 A short pipeline

In this section, we’ll create a short pipeline step by step.
For the sake of example, our pipeline will consist of two steps:getorf and

garnier . EMBOSS programgetorf finds all open reading frames (ORFs) in
a genomic sequence, and returns them as peptide sequences. EMBOSS program
garnier predicts protein secondary structures in these peptide sequences.

After creating the initial pipeline, we will modify it so that it can run concur-
rently on several input sequences.

3.2.1 Building the pipeline

First we create thegetorf andgarnier instances on the canvas, by selecting
their templates from the EMBOSS tab on the left panel, and then clicking on the
canvas. With the two instances created, the canvas should look like that in Fig. 9.

We would like to configure thegetorf instance so that it reads a nucleic se-
quence fromseq01.fasta and then writes the ORF sequences toseq01.orf .
Similarly, we would like to configuregarnier instance so that it reads the pep-
tide sequences fromseq01.orf and then writes the secondary structure predic-
tions toseq01.struct . So for each instance, we double-click and fill-out the
properties dialog box as shown in Figs. 10 and 11.

The workflow, as shown in Fig. 9, is not a pipeline since there is no depen-
dency defined between the two instances. As it stands,getorf andgarnier
are independent, which means that the interpretor can run them in any order, or
concurrently if necessary. However, this is not what we intended. Rather, we
expectgarnier to run only aftergetorf has completed. To express this in
Wildfire, we have to draw an arrow between the two instances by cicking on the
right edge ofgetorf and dragging the arrow to the left edge ofgarnier . The
canvas should now look like that of Fig. 12.

Sincegetorf will run first, we add the directory nameipdir to the “Input
Dir” field of the getorf properties dialog. This instructs GEL to first copy
the files from the directoryipdir into the working directory before executing
getorf . Similarly, we add the directory nameresult to the “Result Dir” field

13

Figure 9: EMBOSS programsgetorf andgarnier on the Wildfire canvas.

of thegarnier properties dialog; this instructs GEL to copy the contents of the
working directory into the subdirectoryresult aftergarnier has completed.

The Wildfire workflow can be paraphrased as follows:

1. copy contents ofipdir into the working directory;

2. rungetorf with input fileseq01.fasta and write the output toseq01.orf ;

3. rungarnier with input fileseq01.orf and write the output toseq01.struct ;
and,

4. finally, copy the new files (i.e. those that did not originate fromipdir) into
the directoryresult .

Before you run the workflow, you should make sure that the input datafileseq01.txt
can be found in theipdir directory. You should copy the file there using the
Windows Explorer or other file manager.

After execution of the pipeline, the Wildfire canvas and Project Browser pane
should look like that of Fig. 13.

3.2.2 Generalising the pipeline

Now suppose you need to run this pipeline on a collection of independent input
sequences, e.g.seq01.fasta andseq02.fasta . Wildfire has a workflow

14

Figure 10: Properties forgetorf instance.

15

Figure 11: Properties forgarnier instance.

16

Figure 12: The final pipeline showing the dependency arrow betweengetorf
andgarnier .

Figure 13: Wildfire showing the canvas and project browser pane after executing
the pipeline.

17

construct which can do exactly this.
Starting from the previous workflow, click on the “pforeach” button, which is

the fourth button from the left in the toolbar above the canvas. If you then click on
the canvas, a “pforeach container” is drawn on the canvas. Resize this container
so that it envelopes bothgetorf andgarnier , as shown in Fig. 14. Double
click on the banner of the pforeach container to bring up the dialog shown in
Fig. 15, where we specify$f for the variable andseq*.fasta for the filename
pattern. What this means is that for each file matchingseq*.fasta , there will
be a separate copy of the workflow inside the pforeach container for which the
variable$f is interpreted to be the name of the file.

To give a concrete example, suppose the work directory contains two files:
seq01.fasta andseq02.fasta . Both of these files match the patternseq*.fasta ,
and so there will be two independent copies of the pipelinegetorf -> garnier ;
in one copy,$f is understood to meanseq01.fasta and in the other,$f is un-
derstood to meanseq02.fasta .

Figure 14: The modified workflow showing the pforeach container bounding
getorf andgarnier .

The workflow is not quite complete. We have to modify the properties of
the getorf andgarnier instances so that they make use of the variable$f .
Figure 16 illustrates how to use variables. In the textbox in the input section,
the equals symbol (=) means that what follows is an expression, not a literal
value (cf. spreadsheet applications such as Microsoft Excel). So the expression

18

Figure 15: The properties dialog of the pforeach container. We choose to iterate
over the variable$f over all files matchingseq*.fasta .

“= $f ” means “the value of variable$f ”. In the textbox in the output sec-
tion, we see the concatenation operator, written as dot (“. ”). The expression
“= $f . ".orf" ” means “the value of variable$f appended with the four
characters.orf ”. Note that we no longer specify anything in the “Input Dir”
field.

Similarly, Fig. 17 shows the properties of thegarnier instance. Note that
in the input section, we specify “= $f . ".orf" ”, i.e. the same as in the out-
put section of thegetorf instance. Finally, for the output section, we specify
“= $f . ".struct" ”.

Returning to our concrete example, for one copy of the pipeline,getorf will
read data fromseq01.fasta and write the ORFs toseq01.fasta.orf .
Thengarnier will read the ORFs fromseq01.fasta.orf and write the sec-
ondary structure predictions toseq01.fasta.struct . The second pipeline is
similar, except the file names areseq02.fasta followed byseq02.fasta.orf
before finallyseq02.fasta.struct . Since the pforeach container createsin-
dependentcopies of the pipeline, the programs can be executed concurrently, if
possible.

If you are concerned that filenames suchseq01.fasta.orf are inelegant
and preferseq01.orf , do not worry for Wildfire indeed has an operator which
allows you to program it this way. We refer the reader to the next section for a
more detailed explanation of this operator.

We also add two instances ofembossversion which run before and after
the pforeach component. Theembossversion program performs no compu-
tation but the instances rather form a place holder to allow us to specify the In-
put and Result directories of this workflow. This is an implementation artefact
of GEL rather than a conceptual feature. The properties of the first instance of
embossversion , the one labelled “3”, are set according to Fig. 18. Similarly,
the properties of the second instance, namely that labelled “4”, are set according
to Fig. 19.

Construction of the generalised workflow is now complete. Now we can copy
our input files into theipdir directory (making sure to name themseq XXX.fasta),

19

Figure 16: The properties dialog for thegetorf instance in the generalised
pipeline. Here we use the value of variable$f to make it generic.

20

Figure 17: The properties dialog for thegarnier instance in the generalised
pipeline. Here we use the value of variable$f to make it generic.

21

Figure 18: The properties of theembossversion instance labelled “3”. Here
we set “Input Dir” toipdir .

22

Figure 19: The properties of theembossversion instance labelled “4”. Here
we set “Results Dir” toresult .

23

and run the workflow. Figure 20 shows the results pane after executing the work-
flow on two input filesseq01.fasta andseq02.fasta .

Figure 20: The project browser pane in Wildfire after executing the generalised
pipeline on two input files.

3.2.3 Overview

We have now taken the orginal two-stage pipeline and generalised it to run on a
collection of input files. The constructs used in this example create independent
instances of the pipeline which can be executed concurrently if allowed by the
target platform.

4 Composing workflows

This section introduces the Wildfire features used in the constuction of workflows.
We first explain how to add custom, i.e. non-EMBOSS programs, to Wildfire. We
then explain each of the Wildfire canvas constructs.

24

4.1 Adding custom programs

In the left pane of the Wildfire workspace, you will see several tabs. The tab
named “EMBOSS” contains templates for all the EMBOSS applications. You use
these templates to create instances on the Wildfire canvas.

The pane named “Custom” contains the templates for non-EMBOSS pro-
grams. We have already created templates for two NCBI BLAST applications:
formatdb andblastall . You can immediately use these applications in your
workflow, in the same way you would use EMBOSS applications. (It is assumed
the target platform has both applications installed and available in the PATH.)

Each program in the EMBOSS and Custom panes has a corresponding de-
scription of its command-line parameters. In fact, Wildfire uses the EMBOSS
ACD format for this description. To add a new program to the “Custom” panel,
you must create a corresponding ACD file. Wildfire provides an ACD editor which
allows you to do this.

To create a new ACD, selectEdit -> Edit Custom ACD -> New ACD .
This will bring up the ACD editor dialog box as shown in Fig. 21. The bottom
half of the dialog box is used to define the command-line options for the new
application. The fields in th etop half of the dialog box are explained below.

Application [Mandatory] This is the filename of the executable.

Shared ACD [Advanced] Select this checkbox if you want this definition to be
shared by all projects. (Ticking this box will cause changes to this ACD to
affect all project which use it. Therefore it should be used with care.)

Information Textual description of what this program does.

Architecture Architecture for which the executable has been compiled, in the
case where the binary is stored with the project. In the case where the exe-
cutable is to be found in the PATH, i.e. if the executable is already installed
on the execution host, this field is ignored. Currently only the Condor ex-
ecutor supports this architecture heterogeneity.

Library This is reserved for future GEL interpretors which support software het-
erogeneity.

Remote Application RequestThis field is reserved for future use.

Directory (Local) This field specifies where the executable file is stored. If the
executable file is already installed on the host computer and can be found in
the PATH variable, then leave this field blank.

Hostname (Remote)This field is reserved for future use.

25

Figure 21: ACD editor dialog box

26

A new program can be used in a workflow using two schemes: (1) put the
executable file together with the project files; or (2) install the executable on the
execution host by putting it into the PATH. For the first option, you must set the
“Directory (Local)” field to point to the executable. For the second option, you
must leave “Directory (Local)” blank.

The syntax for the command-line parameters for the program must be defined
using the bottom half of the dialog box. To define a new user-specifiable parame-
ter, click on the “New” button to the right of the list of parameters. This will bring
up the dialog box shown in Fig. 22.

Figure 22: New parameter dialog box

The “Section” field simply defines the organisational structure of the resulting
properties dialog box, i.e. whether the field should appear in the “Input”, “Out-
put”, “Required” or “Advanced” sections. The “Datatype” field allows you spec-
ify what type the argument should take. This allows Wildfire to do some further
checking of the command-line parameters, however, “string” will suffice for al-
most all applications if you are prepared to forego this extra level of checking.

The remaining fields are explained below.

Parameter Name This field gives the name of the parameter. For example, fi the
parameter name isxyz , then Wildfire will add the command-line option
-xyz nnn wherennn is the value given by the user. If the valuennn
should be specified without a dash-option, e.g.prog nnn , then theParam
option should be set to “N” (see below).

Default This is the default value for this parameter.

Information This is a help string.

Regexp This is a regular expression which further constrains allowable values.

27

Param If this is set to “Y”, then the the command is given with a dash, thePa-
rameter Name, space and then the value. For exampleprog -xyz nnn .
If this is set to “N”, then argument is passed without theParameter Name,
e.g.prog nnn .

The “list” datatype allows you to specify a list of possible values. In this case,
the “Value” field should be given in the formval:display pairs separated by
semicolons. For example,Y:Protein; N:Nucleotide will display a drop-
down list with options “Protein” and “Nucleotide”, and selecting them would give
values “Y” and “N” respectively.

A similar datatype is “select”. For this data type, “Value” field should be a
semicolon-delimited list of names, and they will be numbered sequentially from
1. For example, the valueone; two; three would display a drop-down list
with options “one”, “two” and “three”. The corresponding values to these options
would be1, 2 and3.

Similarly, to edit an ACD file, selectEdit -> Edit Custom ACD ->
Edit ACD . This will bring up the dialog box shown in Fig. 23.

Figure 23: ACD edit dialog box

4.2 Workflow constructs

4.2.1 Program instances

Program instances are the atomic components of workflows; a workflow is a col-
lection of programs assembled together using the other constructs.

A program instance is presented as a yellow box on the canvas, an example
of which is shown in Fig. 24. The top half of the box contains the progam name
(e.g.blastall), and the bottom half contains a number (e.g.1) which uniquely
identifies a particular program instance; this is used to distinguish between two
programs of the same name on the canvas.

28

Figure 24: Job

Figure 25: Sequential dependency

Most programs have user-changeable properties. Double-clicking on the yel-
low box brings up the properties dialog box. This dialog box follows the user
interface elements of Jemboss.

4.2.2 Dependencies (arrows)

An arrow pointing from programA to B means that programB is dependent on
A, i.e. programB cannot run untilA has completed running. Figure 25 shows an
arrow betweenformatdb:1 andblastall:2 , i.e. to run this workflow, you
must first runformatdb before runningblastall .

4.2.3 Parallel container

Two vertical blue bars denote the sides of a parallel container. The workflow
between these two bars are considered to be one composite component. It is a
component in the sense that it is logically one unit, like a program instance, and
you can draw arrows to and from other components. Figure 26 shows a parallel
container in which there are two instances ofblastall , namelyblastall:1
andblastall:2 .

Figure 26: Parallel

29

4.2.4 Parallel foreach container

The parallel for eachcontainer is denoted by an orange rectangle with rounded
corners, and a labelpforeach with an icon in the top right corner. This container
has two parameters: a variable name and aglob pattern. A glob pattern is used to
match file names based on rules and is commonly used in many unix programs.
Examples of glob patterns are*.txt and seq*.fasta . The former would
match, for example,file1.txt and file2.txt , whereas the latter would
match, for example,seq002.fasta andseqAAyyXX82ff.fasta .

Figure 27: Parallel for each loop

During workflow execution, when its depending components, i.e. components
which point to it, have completed, Wildfire will find all files which match the glob
pattern, and create one independent copy of the workflow within the container for
each matching file. In each copy, the value of the variable specified in the con-
tainer is assigned the file name of the corresponding file. The value of this variable
can be used for constructing parameters for the programs inside the container.

For example, the parallel for each container in Fig. 27 specifies variable name
$f and glob pattern*.txt . Supposing filesa.txt , b.txt andc.txt are all
the files that match this pattern, then Wildfire will create three independent copies
of blastall . Theblastall program can refer to the value of$f using the
=... notation.

4.2.5 Parallel for container

The parallel for container is similar to the parallel for each container. In
this case, the container has a name of the variable (refered to as theindex) and a
lower and upper bound. During execution, Wildfire creates an independent copy
of the workflow within for each integer between the lower and upper bounds. In
each copy, the variable gives the corresponding index value.

For example, the parallel for loop in Fig. 28 specifies index variable$f and
lower and upper indices1 and10 . In this case, Wildfire will create 10 copies of
blastall , one each for$f in 1, 2, . . . , 10.

The main difference between the two types of parallel container is that the
number of copies deriving from the parallel for container can be determined be-

30

Figure 28: Parallel for loop

fore the program is run, whereas the number of copies for the parallel for each
container is determined by the output of the programs themselves, and so cannot
be determined until the programs have been run.

4.2.6 While loop

A purple circle is part of thewhile loop, which allows workflows to have a variable
number of sequentially dependent programs. A while loop consists of a program
called theloop guard , and a loop body. The loop body can be any workflow
component.

Figure 29: While loop

In the example in Fig. 29, the programtest is the loop guard, and the body is
the programloop . During execution, Wildfire will executetest , and if test
wrote any thing to standard output, the result of execution is deemed to befalse,
otherwise it is deemed to betrue. If test returns true, then Wildfire will execute
the loop body, which in this example is a program calledloop . If, however,test
returned false, then Wildfire will follow thebreakarrow, which in this example
leads to a program calledfinish . After execution of the loop body, Wildfire
runs the loop guard, i.e.test , again, and depending on whether it returns true or
false, Wildfire behaves as before.

Note that if the loop guard always returns true, then Wildfire will execute the
loop body and loop guard again and again and the execution will not terminate.

31

It is important to note that the loop guard must be abooleanprogram. Such a
program is one which does not write to any file, and signals false by writing to the
standard output, and true by writing no data.

4.2.7 Conditional branches

A purple rhombus denotes a branch point. A branch point has an associated pro-
gram called aconditionand two components called the true and false branches,
respectively. The condition is analogous to the loop guard of the while loop, and
will return either true or false. If the condition returns true, then execution contin-
ues along the true branch; otherwise along the false branch.

Figure 30: Conditional

The example in Fig. 30 shows a branch point with conditiontest and branches
true andfalse .

5 Executing workflows

5.1 Export workflow as GEL script

For execution, Wildfire will export the workflow as a GEL script. The GEL script
is the textual representation of the graphical canvas. This GEL script is given as
input to a suitable GEL interpretor, depending on the execution platform.

The GEL script is automatically exported when the user runs the workflow.
However, it is also possible to just export the workflow without executing it by
selectRun -> Build . This will save the GEL script in the project directory
with the file nameproject .gel whereproject is the name of the project.

If desired, you can take this exported GEL script and manually invoke a GEL
interpretor on the command line. This is convenient for workflows that have to be
run frequently, or very long-running workflows.

The “Build” feature also serves as a useful mechanism to check for basic errors
in the workflow as described in the next section.

32

5.2 Illegal workflows

A Wildfire workflow consists of components joined by arrows. A component can
be a program instance (denoted by a yellow rectangle) or any of the pfor, pforeach
or parallel containers.

Each workflow component can have at most one outbound and one inbound
arrow. The arrows must satisfy two constraints: (i) they can only join components
at the same level; and (ii) they must not form cycles. Figure 32 shows a workflow
where the arrows do not satisfy constraint (i), and Fig. 31 shows a workflow with
a cycle.

In the case of illegal workflows, Wildfire will alert the user by annotating the
workflow (e.g. Figs. 32 and 31) when the user tries to run the workflow or build
the GEL script.

Figure 31: Cyclic workflow (error).

Figure 32: A workflow with an invalid dependency. The dependency arrow from
embossversion:1 should connect to the pforeach box, not the embossversion:2
instance inside.

The test program is required for the if and while constructs. Figure 33 shows
the canvas when the test is missing for the if construct. Similarly, Fig. 34 shows
the canvas for the while construct.

5.3 GEL target platforms

Wildfire supports two modes of execution (local and remote), as well as all the
various parallel platforms supported by GEL (i.e. LSF, PBS, SGE clusters, Condor
Grids, and SMP servers).

33

Figure 33: “If construct” with missing test.

Figure 34: “While construct” with missing test.

Local execution is simpler, and assumes that the machine running Wildfire
will also be running GEL. Typically, this would mean that the machine on which
you are running Wildfire is in fact part of a cluster, Condor Grid or is a compute
server. Since GEL presently only supports GNU-style Unix machines, this option
is not available for Windows users.

Remote execution means that the project will be transfered to a remote host
for execution, and the results will be transfered back. This is necessary for people
who are using Windows. The remote host typically would be the head node of
a cluster, any submit host of a Condor Grid, or the compute host itself. Since
the project, including the data files and any binary files, must be transfered to the
remote host, this mode of execution is less efficient.

For both modes of execution, the user must select which type of parallel plat-
form the target host is. In the case of execution on a cluster, the user must select
one ofPortable Batch System(PBS),Sun Grid Engine(SGE) orLoad Sharing
Facility (LSF) to match the scheduler installed on the cluster. In the case of ex-
ecution on a Condor Grid, the user must select Condor. In the case of a multi-
processor server, or if you do not want use any scheduler, you can simply select
Local Threads.

To simplify these execution profiles, sets of options can be saved as pro-
files. When you selectRun -> Run , Wildfire will show the execute dialog
box (Fig. 35) which lists the available target platform profiles. Figure 35 shows
two profiles namedlocal andremote linux . Profile local is installed by

34

default and will execute the workflow using the local mode, and local threads
(i.e. same machine and no scheduler).

To create a new profile, click on “New”. This will bring up the dialog box
displayed in Fig. 8. The fields in this dialog box are explained below.

Profile The name of this profile.

Local/Remote Local or remote mode of execution.

Hostname (Only needed for remote execution mode.) Name of remote host.

Port Port on which ssh daemon is running on the remote host. Typically this
would be port 22.

Scheduler Select one ofPortable Batch System(PBS),Sun Grid Engine(SGE)
or Load Sharing Facility(LSF), orLocal Threads.

NumProc (Only needed when Local Threads is selected.) The maximum number
of concurrent processes allowed.

MPI Type / MPI Path These are reserved for future use.

Clean up Tick this box to remove the temporary directory after workflow execu-
tion. This option is only valid for the local execution mode.

Click “Save” to save the profile.

Figure 35: Wildfire’s Run dialog box. Each item in the list corresponds to a target
platform profile.

35

6 Examples

Wildfire is distributed together with a collection of examples. If you had installed
Wildfire using the Windows installer, they are available in theC: \Documents
and Settings \〈username 〉\project \examples directory. Otherwise,
in Windows, to copy the examples, copy the directories inc: \Program Files \Wildfire
2.0 \examples to c: \Documents and Settings \〈user 〉\project .

In Linux/UNIX, copy the directories in theexamples subdirectory of the
Wildfire program directory to$HOME/project . For example, if you installed
Wildfire in $HOME/wildfire-2.0 , then copy the directories in$HOME/wildfire-2.0/examples .

Once the examples have been copied, when you selectFile -> Open , the
examples will be available immediately.

36

